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Massive Charged Quasinormal Modes
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Using the WKB method and HYBRD program, we evaluate the low-lying massive
charged scalar and Dirac field quasinormal modes (QNMs) of a Reissner-Nordström
black hole. We discuss the real and imaginary parts of QNMs vary with the charge of
black hole, the masses and charges of scalar and Dirac fields.

KEY WORDS: black hole; quasinormal modes; WKB method; low-lying modes.

PACS numbers: 04.70.-s, 04.50.+h, 11.15.-q, 11.25.Hf

1. INTRODUCTION

The perturbations of black holes have been studied for many years. It is well-
known that there are three stages during the evolution of the field perturbation in
the black hole background: the initial outburst from the source of perturbation,
the quasinormal oscillations and the asymptotic tails. The frequencies and damp-
ing time of the quasinormal oscillations called “quasinormal mode” (QNM) are
determined only by the black hole’s parameters and independent of the initial per-
turbations. QNM frequencies (QNMs) is one of the important and exciting themes
in the black hole physics. A great deal of efforts have been devoted to the black
hole’s QNMs for the possibility of direct identification of black hole existence
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through gravitational wave detectors in the near future (Nollert, 1999; Kokkotas
and Schmidt, 1999).

Many researchers have developed various method to calculate QNMs (see
the review articles (Nollert, 1999; Kokkotas and Schmidt, 1999) and references
therein). Most of the studies on QNMs discuss only on massless fields (Su and
Shen, 2004, 2005a,b; Konoplya and Abdalla, 2005; Zhidenko, 2004, 2006; Car-
doso and Lemos, 2003; Cardoso et al., 2004; Daghigh and Kunstatter, 2005; Chang
and Shen, 2005; Berti and Kokkotas, 2005; Jing and Pan, 2005a; Jing, 2005; Jing
and Pan, 2005b). There are few studies massive QNMs (Simone and Will, 1992;
Konoplya and Zhidenko, 2005; Ohashi and Sakagami, 2004; Xue et al., 2002;
Cho, 2003; Konoplya, 2006). Wu and Zhao (2004) investigated massless charged
Dirac QNMs and Konoplya (2002) studied massive charged scalar ones of a
Reissner-Nordström (RN) black hole.

In this paper, we evaluate the QNMs of a RN black hole for massive charged
scalar and Dirac fields perturbation. This article consists of the following contents.
The massive charged equations in the RN black hole can be reduced into a set of
Schrödinger-like equations with a particular effective potential. In Section 2, we
compare the different properties of particular potentials between scalar and Dirac
fields. Then we calculate the low-lying QNMs using third order WKB method and
present the numerical result and discussion in Section 3. A summary is presented
in Section 4. Throughout this paper, we use units in which G = c = M = 1.

2. PROPERTIES OF THE EFFECTIVE POTENTIAL

The metric of the RN black hole is

ds2 = −f (r) dt2 + 1

f (r)
dr2 + r2(dθ2 + dφ2), (1)

here f (r) = 1 − 2M/r + Q2/r2, Q and M are the electric charge and the mass
of the black hole. Let

r± = M ±
√

M2 − Q2 (2)

be the roots of f (r) = 0, and the surface of r = r+ is an event horizon of the
the RN black hole. In curved spacetime, the equations of massive charged Dirac
equations are

√
2

(∇AḂ + ieAAḂ

)
P A + impQ̄B ′ = 0,

√
2

(∇AḂ − ieAAḂ

)
QA + impP̄B ′ = 0, (3)

where P A and QA are two two-component spinors, the operator ∇AḂ denotes the
spinor covariant differentiation. ∇AḂ = σ

µ

AḂ
∇µ, and σu

AḂ
are 2 × 2 Hermitian ma-

trices which satisfy gµνσ
µ

AḂ
σ ν

CḊ
= εACεḂḊ , where εAC and εḂḊ are antisymmetric
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Levi-Civita symbols, the operator ∇µ is covariant differentiation. AAḂ is the elec-
tromagnetic field potential spinor components which Aµ = (−Q/r, 0, 0, 0). mp

is the mass of Dirac fields expressed in Compton wave length. e is the electric
charge of Dirac fields. Dirac equations (3) in RN metric reduce to radial and
angular parts (Chang and Shen, 2005; Wu and Zhao, 2004; Page, 1976)

�1/2D0R−1/2 = (λ + impr)�1/2R+1/2,

�1/2D+
0 (�1/2R+1/2) = (λ − impr)�1/2R−1/2 (4a)

L1/2S+1/2(θ ) = −λS−1/2(θ ),

L+
1/2S−1/2(θ ) = +λS+1/2(θ ), (4b)

where � = f (r)r2 = r2 − 2Mr + Q2, and operators such as Dn are defined
in Wagh and Dadhic (1985). λ = ±(j + 1/2) is the separation constant deter-
mined by the angular equations (4b) (Goldberg et al., 1967), and j = (2l − 1)/2
with l positive integer.

By introducing the tortoise coordinate transformation from the radial variable
r to the tortoise coordinate r∗ which is given by

dr∗ = r2

�
dr, (5)

and then the coordinate transformation

dr̂∗ =
(

1 + �

r2

λmp

2ω

1

λ2 + m2
pr2

− eQ

rω

)

dr∗, (6)

we combine the radial equations (4a) and obtain the pair of one-dimensional
Schrödinger-like equations

(
d2

dr̂2∗
+ ω2

)
Z± = V±Z±, (7)

where

V± = W 2 ± dW

dr̂∗
, (8)

W = �1/2
(
λ2 + m2

pr2
)3/2

r2
(
λ2 + m2

pr2
)

(1 − eQ/rω) + λmp�/2ω
. (9)

V+ and V− are super-symmetric partners derived from the same potential W and
have the same spectra of QNMs (Anderson and Price, 1991). We conerntrate only
on V+ in evaluating following calculation and drop the subscript of V+.
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Corresponding to equation (3), massive charged Klein-Gordon equation in
curved spacetime is

1√−g

∂

∂xµ

[√−ggµν

(
∂

∂xν
− ieAν

)]



− ieAµ

[
gµν

(
∂

∂xν
− ieAν

)]

 = m2

p
. (10)

Setting 
 = e−i(ωt−mφ)S(θ )R(r)/r and using the tortoise coordinate transforma-
tion defined in equation (5), Konoplya (2002) derived the radial and angular
equations

− 1

sin θ

d

dθ

(
sin θ

dS(θ )

dθ

)
+ m2

sin2 θ
S(θ ) = λS(θ ), (11)

d2R(r)

dr2∗
+ [ω2 − V ]R(r) = 0. (12)

Equation (11) is a spheric harmonics function and the separation constant λ =
l(l + 1), where l = 0, 1, 2, 3 . . . is the angular momentum quantum number. The
effective potential in the one-dimensional Schrödinger-like radial equation (12) is

V = f (r)

(
l(l + 1)

r2
+ 2M

r3
− 2Q2

r4
+ m2

p

)
+ 2ωeQ

r
− e2Q2

r2
. (13)

The sign of the product eQ affects the equations (8) and (13). Taken Q to be
always positive, a negative e means e and Q have contrary signs, and vice versa.

Wu and Zhao (2004) have studied the effective potential for charged massless
Dirac fields in RN spacetimes in detail. In general speaking, eQ > 0 increases the
effective potential. In Figs. 1 and 2, we show the dependence of effective potential
for scalar and Dirac fields on ω. As ω increases, the effective potential for scalar
fields increases slowly for a positive e and decreases slowly for a negative e (see
Fig. 1), which can be derived from equation (13). Larger ω changes the effective
potential more. The dependence of effective potential for Dirac fields on ω is more
complex than for scalar fields. In contrary to scalar fields, small ω changes the
effective potential more, especially for eQ > 0 (see Fig. 2). Integrating equations
(5, 6), we obtain the expression of r̂∗ and r∗ for r > r+

r̂∗ = r∗ + arctan mpr

λ

2ω
− eQ [r+ ln (r − r+) − r− ln (r − r−)]

ω (r+ − r−)
(14)

r∗ = r + r2
+ ln (r − r+)

r+ − r−
− r2

− ln (r − r−)

r+ − r−
. (15)

From equations (14) and (15), the r̂∗(r)-relation is single-valued for r > r+ so
long as 1 − eQ/r+ > 0 which means eQ < 0 or eQ > 0 and ω > eQ/r+ = ωs .



1574 Chang and Shen

Fig. 1. Variation of effective potential for scalar fields with l = 3,
mp = 0.03, Q = 0.3, e = ±0.3 and ω = 0.5, 0.1, ωs (defined as
Dirac fields).

The super-radiance frequency ωs is solely determined by the electromagnetic
interaction between the Dirac fields and black hole. In this case, the effective
potential of Dirac fields varies smoothly. When this inequality obtains, the r̂∗(r)-
relation is double-valued: r̂∗ → +∞ both when r → ∞ and when r → r+ + 0
and the effective potential of Dirac fields becomes singular at a certain location
r = α(> r+) when eQ > 0 and ω < ωs . Wagh (1985) has proved the absence of

Fig. 2. Variation of effective potential for Dirac fields with l = 3,
mp = 0.03, Q = 0.3, e = ±0.3 and ω = 0.5, 0.1, ωs .
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Fig. 3. Variation of effective potential for scalar fields with l = 3,
ω = 1, Q = 0.3, e = ±0.3 and mp = 0, 0.3, 0.6.

super-radiance (Chandrasekhar, 1983) of Dirac fields in Kerr-Newman geometry
which goes over to the RN geometry although eQ > 0 and ω < ωs .

Figures 3 and 4 show the dependence of the effective potentials on the mass
of scalar and Dirac fields. When r → r+, the effective potential of scalar fields
V → 2ωeQ/r+ − e2Q2/r2

+, which is different from Dirac case, V → 0. The
effective potentials of scalar and Dirac fields approach the same constant value,

Fig. 4. Variation of effective potential for Dirac fields with l = 3,
ω = 1, Q = 0.3, e = ±0.3 and mp = 0, 0.3, 0.6.
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m2
p, with different tendencies at spatial infinity which can be described as follow:

Vr→∞ =
⎧
⎨

⎩
m2

p − 2
Mm2

p

r
+ 2

eQm2
p

rω
+ O

(
1
r2

)
(Dirac)

m2
p − 2

Mm2
p

r
+ 2 eQω

r
+ O

(
1
r2

)
(scalar)

(16)

3. EVALUATION OF QNMS AND DISCUSSION

The WKB method was proposed by Schutz and Will (1985) for the lowest
order and extended by Iyer and Will (1987) to the third modes and Konoplya (2003)
to the sixth order. The WKB method can be generalized to RN and Kerr black
holes and the third order approximation yield very accurate results for the low-
lying modes. In this paper, we compute the QMMs using the third order WKB
formula:

ω2 = [V0 + (−2V ′′
0 )1/2�] − i

(
n + 1

2

)
(−2V ′′

0 )1/2(1 + �), (17)

where

α = n + 1

2
, n =

{
0, 1, 2, . . . , Re(ω) > 0,

−1,−2,−3, . . . , Re(ω) < 0,
(18)

V
(n)

0 = dnV

dr̂n∗

∣∣∣∣
r̂∗=r̂∗(rmax)

, (19)

n is the mode number and n < l for low-lying modes. � and � are complex
expressions of V

(n)
0 which can be found in Iyer and Will (1987) and many other

literatures.
Since the effective potentials of Dirac fields depend on ω and have more

complex form than scalar fields, the procedure of finding scalar QNMs used by
Konoplya (2002) can not work well. The procedure need to find the value of
r = rmax at which the effective potential attains the maximum as a numerical
function of ω. Seidel and Iyer (1990) used Taylor expansions of both the effective
potential and the quantity rmax, which both involve the complex frequency ω, to
calculate the QNMs of Kerr black holes using the similar method, Cho (2003)
evaluated the massive Dirac QNMs of Schwarzschild black holes. But the error
of this method increases as the quantity of power series increase. Using Muller’s
method based on quadratic interpolation among three points, Kokkotas (1991)
solved the system of two complex transcendental equations and evaluated the
QNMs of Kerr black holes. The results of Kokkotas is more accurate than that of
Seidel and Iyer for large a, the angular momentum per unit mass of rotating black
holes. The Minpack routine HYBRD is to find a zero of a system of N non-linear
function in N variables by a modification of Powell hybrid method. In this paper,
we adopt the double precision version of HYBRD program to evaluate the QNMs.
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Fig. 5. Re(ω) as function of Q for Dirac fields with l = 2,
n = 0, e = 0,±0.05,±0.1 and mp = 0.1, 0.2.

Figures 5, 6, 7 and 8 show the real and imaginary parts of ω as a function of
Q for l = 2, n = 0, mp = 0.1, 0.2 and e = 0,±0.05,±0.1. In these paragraphs,
we discuss under the condition of small magnitude of fields charges. In general
speaking, the modifications of the masses on real and imaginary parts decrease as
Q increases. For Q = 0, the RN black hole becomes a Schwarzschild black hole,
the QNMs of scalar and Dirac fields are both determined by mp, the masses of
the fields. Without the Coulomb interactions between the charged fields and black
hole, the charges of fields do not change the QNMs. For a given l, Re(ω) grows
with increasing Q while e larger than a critical e0, which determined by l. If e < e0,
Re(ω) decreases first then increase. As the Q increases, the influence of e gets
larger. For fixed Q and mp, Re(ω) grows with increasing e. The detailed discussion
on the influence of e and mp are in the following paragraphs. When Q → 1, a

Fig. 6. Im(ω) as a function of Q for Dirac fields with
l = 2, n = 0, e = 0, ±0.05,±0.1 and mp = 0.1, 0.2.
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Fig. 7. Re(ω) as a function of Q for scalar fields with
l = 2, n = 0, e = 0,±0.05,±0.1 and mp = 0.1, 0.2.

near extremal RN black hole, the real parts of QNMs determined by the small
magnitude charges of fields (Figs. 5 and 7). As the increase of Q, the influences
on Im(ω) of e reaches a maximum then decreases. There also exits a critical e′

0,
the magnitude of Im(ω) increases first then decreases and increases later when
e < e′

0. For fixed Q and mp, the magnitude of Im(ω) increases monotonically with
e. In the enlarged views of Figs. 6 and 8, for the near extremal RN black hole the
approach values of Im(ω) depend on the masses of fields.

In Figs. 9, 10, 11 and 12, we show the QNMS as a function of mp. Ohashi
and Sakagami (2004) found the quasi-resonances modes (QRMs) for the massive
scalar field using Leaver method, which means Im(ω → 0) and the perturbation
with arbitrary life. Konoplya and Zhidenko (2005) proved that the purely real
frequencies are not forbidden for massive scalar field and study the overtones

Fig. 8. Im(ω) as a function of Q for scalar fields with
l = 2, n = 0, e = 0,±0.05,±0.1 and mp = 0.1, 0.2.
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Fig. 9. Re(ω) as a function of mp for Dirac fields with
l = 3, n = 0, 1, 2, e = 0 and Q = 0.1.

QNMs of scalar field in Schwarzschild black holes using Leaver method. We
study the variations of scalar and Dirac low-lying QNMs for the masses of fields
using WKB method. The larger mp increases the tails of effective potentials and
broadens the effective potential peak, which will add inaccuracy of WKB method.
For the low-lying QNMs, tunnelling to occur ω2 must be smaller than the peak
value of the potential and the energies of the fields are always larger than the
masses mp, so the QNMs exist only when m2 < ω2 < Vmax. We can estimate the
maximum value mp max from Simone and Will (1992); Cho (2003):

V (rmax, ω = mp max) = (mp max)2. (20)

As the masses of scalar and Dirac fields increase, the real parts of QNMs increase
and the magnitude of imaginary parts decreases. Near the mp max derived from

Fig. 10. Im(ω) as a function of mp for Dirac fields with
l = 3, n = 0, 1, 2, e = 0 and Q = 0.1.



1580 Chang and Shen

Fig. 11. Re(ω) as a function of mp for scalar fields with
l = 3, n = 0, 1, 2, e = 0 and Q = 0.1.

equation (20), the real parts of higher tones Dirac fields QNMs increase rapidly
first then the lower tones (Fig. 9), and for scalar fields case, there exist abnormal de-
crease (for n = 2) or increase (for n = 0, 1, Fig. 11). The magnitude of imaginary
parts increases correspondingly at the same value of mp where the real parts of
QNMs become abnormal. Because the larger value of mp add inaccuracy of WKB
method, the abnormal changes of QNMs vary with increasing masses of fields
mean the WKB method out of work. Larger n modes change abnormally firstly
accord with the fact that the WKB method is more accurate for the fundamental
modes. We will discuss this in another article.

Figures 13, 14, 15, and 16 show the QNMs variation with e. In general, the
real parts of scalar and Dirac QNMs both increase linearly as e increases (Figs. 13
and 15). For the large value of Q, the decrease of e can lead to tiny values of the
Re(ω), which means damp without oscillations (Konoplya, 2006). The imaginary

Fig. 12. Im(ω) as a function of mp for scalar fields with
l = 3, n = 0, 1, 2, e = 0 and Q = 0.1.
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Fig. 13. Re(ω) as a function of e for Dirac fields with
l = 3, n = 2, Q = 0.1, 0.5, 0.8, 0.9, 0.99 and mp = 0.1.

parts decrease as e increases except the near extremal RN black hole. For the near
extremal RN black hole, the imaginary parts increase as e increases when e larger
than a special positive value (Figs. 14 and 16).

4. SUMMARY

In this paper, we have discussed the charged massive scalar and Dirac fields
QNMs by using WKB method. We first derived the one-dimensional Schrödinger-
like equations of scalar and Dirac fields in RN black holes. The expression of
Dirac fields is more complex than scalar fields. The approach values of potentials
when r → r+ and r → +∞ are different. Variations of potential on ω and mp

Fig. 14. Im(ω) as a function of e for Dirac fields with
l = 3, n = 2, Q = 0.1, 0.5, 0.8, 0.9, 0.99 and mp = 0.1.
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Fig. 15. Re(ω) as a function of e for scalar fields with
l = 3, n = 2, Q = 0.1, 0.5, 0.8, 0.9, 0.99 and mp = 0.1.

are plotted in Figs. 1, 2, 3, and 4. The Dirac fields have super-radiance frequency
ωs . When eQ > 0 and ω < ωs , the r̂∗(r)-relation is double-valued, which make
potentials of Dirac fields singular. We use double precision version of HYBRD
program to evaluate the QNMs instead of series expansion method.

Though the different coordinate transformation and effective potentials for
scalar and Dirac fields, the behavior of their QNMs are very similar. The WKB
method can not applied for the large masses fields in the asymptotic flat spacetime.
Many results are similar to the references (Konoplya and Zhidenko, 2005; Ohashi
and Sakagami, 2004; Wu and Zhao, 2004; Konoplya, 2002).

Fig. 16. Im(ω) as a function of e for scalar fields with
l = 3, n = 2, Q = 0.1, 0.5, 0.8, 0.9, 0.99 and mp = 0.1.
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